296. Molecular Polarisability. Dependence of Apparent Molar Kerr Constants at Infinite Dilution on the Medium in which they are measured.

By R. S. Armstrong, M. Aroney, C. G. Le Fèvre, R. J. W. Le Fèvre, and M. R. Smith.

Measurements are reported of the apparent molar Kerr constants of carbon tetrachloride, carbon disulphide, benzene, and naphthalene as solutes in light petroleum, carbon tetrachloride, benzene, and carbon disulphide. Solvent influences are detected and can be correlated with such functions of the refractive index of the solvent as $\left(n_{1}{ }^{2}-1\right) /\left(n_{1}{ }^{2}+2\right)$. It is suggested that the semi-axes of the polarisability ellipsoid of a solute are modified in the presence of a surrounding medium. Four equations, containing empirical terms, are examined whereby " true" semi-axes may be calculated from values secured in carbon tetrachloride, and whereby in turn the apparent semi-axes in other solvents can be computed. Certain consequences such as the predicted increases in molecular anisotropy or electronic polarisation in passing from the liquid or dissolved states to the gas are also considered against the evidence from experiment.
In general, the molar Kerr constant of a compound is a property which may be divided into three ${ }^{\mathbf{1 , 2}} \mathbf{2}$ parts:

$$
\begin{equation*}
{ }_{m} K=2 \pi N\left(\theta_{1}+\theta_{2}+\theta_{3}\right) / 9 \tag{1}
\end{equation*}
$$

[^0]In eqn. (1), θ_{1} is the " anisotropy " term, θ_{2} the " dipole" term, and θ_{3} is a temperatureindependent term. Expansions of θ_{1}, θ_{2}, and θ_{3} are given in refs. l-3.* For a non-polar material θ_{2} is, of course, zero. Treatments of θ_{3}, alternative to that of Le Fèvre, Le Fèvre, and Rao, ${ }^{2}$ have been devised by Born and Jordan ${ }^{4}$ and by Buckingham and Pople. ${ }^{5}$ As a consequence of the development of an extrapolation method for the measurement ${ }^{1,3}$ of molar Kerr constants of solutes at infinite dilution, the degree to which such ${ }_{\infty}\left({ }_{m} K_{2}\right)$ values are solvent- or state-dependent is obviously important.

Observations by Le Fèvre and Le Fèvre ${ }^{3,6}$ have shown that the ratios ${ }_{\infty}\left({ }_{m} K_{2}\right) /\left({ }_{m} K_{\text {gas }}\right)$ and $\mu_{\text {solution }}^{2} / \mu_{\text {gas }}^{2}$ (or ${ }_{0} P_{\text {solution }} / 0 P_{\text {gas }}$) are closely similar for substances with moments of 1 d or higher. Since these are cases where θ_{2} (in equation 1) greatly exceeds θ_{1} and θ_{3}, Le Fèvre and Le Fèvre ${ }^{\mathbf{1}}$ have concluded that:

$$
\left(\theta_{2}\right)_{\text {solution }} /\left(\theta_{2}\right)_{\text {gas }} \sim \mu_{\text {solution }}^{2} / \mu_{\text {gas }}^{2}
$$

Theoretical considerations (Buckingham ${ }^{7}$) support this. As empirical and other relations now exist ${ }^{8-10}$ whereby ratios $\mu_{\text {solution }} / \mu_{\text {gas }}$ may be predicted a priori, the problem is almost solved where strongly polar solutes in non-polar solvents are concerned.

Unfortunately very little information exists from which the effects of medium or state on θ_{1} or θ_{3} can be assessed. Obviously such evidence should be sought among non-polar molecules, otherwise changes in θ_{2} could mask those in $\theta_{1}+\theta_{3}$. Three likely sources of data are: (a) the comparison of molar Kerr constants calculated from measurements on non-polar gases ${ }^{11}$ with those found for the same substances as liquids or solutes; (b) the comparison of molecular anisotropies determined for non-polar species in the vapour and liquid states-this follows since the numerator of θ_{1} is essentially produced by multiplying the molecular anisotropy by the square of the electronic polarisation, and the latter is known to be a property only very slightly affected by variations of temperature or state (for definitions, formulæ, etc., see Le Fèvre and Purnachandra Rao ${ }^{12}$); and (c) the comparisons of ${ }_{\infty}\left({ }_{m} K_{2}\right.$)'s found for non-polar solutes in a range of solvents.

Indications from (a) and (b) suggest that there is considerable change of ${ }_{m} K$ with state: the molar Kerr constants of liquid benzene or carbon disulphide at 25° are 5.9×10^{-12} or 24×10^{-12} respectively, ${ }^{1}$ against these the values for ${ }_{m} K_{\text {gas }}$, deduced from the observations by Stuart and Volkmann ${ }^{11}$ on the vaporised substances at 113.6° and 56.7°, are ca. 17×10^{-12} and 48×10^{-12}; light scattering and depolarisation data published ${ }^{13}$ for benzene and carbon disulphide lead to anisotropies as follow:

Indications from (c) are indefinite. Only Briegleb ${ }^{\mathbf{1 4}}$ seems to have dealt with solvent effects where non-polar solutes are involved (see Table 1). Only for CS_{2} and $\mathrm{C}_{6} \mathrm{H}_{6}$ has

[^1]more than one solvent been used; however, Briegleb's remaining $\infty\left({ }_{m} K_{2}\right)$'s in heptane may also be compared with determinations made here ${ }^{3,15}$ in carbon tetrachloride ($1: 4-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2} 10.6 \times 10^{-12}$, $1: 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} 38.6 \times 10^{-12}$, diphenyl 40×10^{-12}, and phenanthrene 83×10^{-12}). In all cases variations are seen, but the changes from solvent to solvent are

Table 1. Molar Kerr constants ($\times 10^{12}$) reported * by Briegleb.
Solutes

Solvent	CS_{2}	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{10} \mathrm{H}_{8}$	$1: 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}$	$1: 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	Ph_{2}	Phenanthrene
$\mathrm{Heptane} \ldots \ldots \ldots \ldots$.	30.0	778	$111 \cdot 0$	$15 \cdot 6$	$28 \cdot 2$	$44 \cdot 4$	$114 \cdot 0$
$\mathrm{Cl}_{4} \ldots \ldots \ldots \ldots \ldots \ldots$.	27.0	$5 \cdot 4$	-	-	-	-	-

* Briegleb's molar Kerr constants are here multiplied by 6 to bring them into relation with those in the present paper.
not consistent throughout, and the extents to which they are due to solvent effects or observational factors are not clear.

Present Work.-At the outset, therefore, it appeared that the most immediately useful contribution would be to establish source (c) on a firm experimental basis. To this end, four solutes and four solvents have been systematically examined according to the scheme set out in Table 2, which also includes the ${ }_{\infty}\left({ }_{m} K_{2}\right)$'s observed and the considerations which guided the original choice of materials.

Table 2. Solvent effects on $\infty\left({ }_{m} K_{2}\right) \times 10^{12}$ for non-polar solutes.

Solute	Shape and polarisability of solute	Solvents			
		Non-polar and near-isotropic		Non-polar and anisotropic	
		Pet*	CCl_{4}	$\mathrm{C}_{6} \mathrm{H}_{6}$	CS_{2}
CCl_{4}	Sphere, isotropic	1-2	1-2	1-2	1-2
CS_{2}.	Rod, anisotropic	$30 \cdot 0$	27.8	$27 \cdot 1$	23.8
$\mathrm{C}_{6} \mathrm{H}_{6}$.	Disc, - ${ }^{\text {, }}$	$8 \cdot 3$	$7 \cdot 2$	$5 \cdot 9$	6.3
$\mathrm{C}_{10} \mathrm{H}_{8}$	Flat sheet, anisotropic,	$49 \cdot 4$	$48 \cdot 1$	$45 \cdot 5$	$45 \cdot 0$

Experimental.-Dielectric constants were determined in the circuit used by Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, ${ }^{18}$ and electric double refractions by the methods noted in refs. 1 and 3. Symbols and extrapolation procedures have already been fully listed and described respectively by Le Fèvre, Le Fèvre, and Oh, ${ }^{17}$ and Le Fèvre and Le Fèvre. ${ }^{1,3}$

Table 3 gives the solvent properties and constants required to proceed from the observ-

Table 3. Solvent properties, constants, etc.

Solvent	Temp.	$10^{7} B$	ε	d	$n_{\text {D }}$	H	J	$10^{14}{ }_{8} K_{1}$
Pet	25°	0.075	1.9449	$0 \cdot 71322$	$1 \cdot 3970$	1.976	0.5070	$2 \cdot 137$
	30	-	1.9397	0.71042	-		-	-
CCl_{4}	25	0.070	2.2270	1.58454	1.4575	2.060	0.4731	0.749
$\mathrm{C}_{6} \mathrm{H}_{6}$	25	0.410	$2 \cdot 2725$	0.87378	1.4973	$2 \cdot 114$	$0 \cdot 4681$	$7 \cdot 56$
$\mathrm{CS}_{2} \ldots$	25	3-145	$2 \cdot 6246$	1-2559	$1 \cdot 6243$	$2 \cdot 275$	$0 \cdot 4325$	31.26

ations, presented in Table 4, to the results shown in Table 5. Materials were as pure as possible, stored over sodium or desiccant as appropriate, and-except naphthalene-redistilled before use. The solvent indicated by "Pet" was a bulk supply of light petroleum (b. p. ca. 90°), taken without further treatment other than drying (sodium wire).

[^2]Table 4. Kerr constants, refractions, dielectric constants, and densities, of mixtures containing weight fractions w_{2} of solute.
(Temp. $=25^{\circ}$, where not otherwise indicated)
Carbon tetrachloride in light petroleum

$\begin{aligned} & 10^{5} w_{2} \\ & \Delta n \end{aligned}$	$\begin{gathered} 8261 \\ 0 \cdot 0022 \end{gathered}$						
		$\begin{gathered} 8556 \\ 0.0023 \end{gathered}$	$\begin{aligned} & 14,437 \\ & 0.0042 \end{aligned}$	$\begin{aligned} & 21,239 \\ & 0.0064 \end{aligned}$	$\begin{aligned} & 25,308 \\ & 0.0078 \end{aligned}$	$\begin{aligned} & 27,144 \\ & 0 \cdot 0086 \end{aligned}$	$\begin{aligned} & 34,713 \\ & 0.0116 \end{aligned}$
		wh	$\Delta n=$	$w_{2}+$	$0 w_{2}{ }^{2}$		
			$\Delta B=0$	all conce	rations ex	mined	
$\begin{aligned} & 10^{5} w_{2} \\ & \varepsilon^{25} \\ & d_{4}^{25} \end{aligned} .$	$\begin{gathered} 8261 \\ 1.9552 \\ 0.74696 \end{gathered}$	8556	14,437	21,239	25,308	27,144	34,713
		$1 \cdot 9558$	1-9641	$1 \cdot 9742$	1.9792	1.9834	1.9965
		0.74826	0.77448	0.80705	$0 \cdot 82792$	0.83789	$0 \cdot 88073$
			whence	$\begin{gathered} 0 \cdot 118 w_{2} \\ 0.382 w_{2} \end{gathered}$	$\begin{gathered} 0.0854 w_{2}{ }^{2}{ }^{2} \\ 0.288 w_{2}{ }^{2} \end{gathered}$		
			Carbon	vachloride	benzene		
$\begin{array}{lll} 10^{5} w_{2} & \ldots \ldots . \\ 10^{7} \Delta B & \ldots \ldots . \\ \Delta n & \ldots & \ldots . . \end{array}$	$\begin{gathered} 6709 \\ -0 \cdot 013 \end{gathered}$	13,009	14,749	20,322	25,398	30,466	32,475
		-0.026	-0.027	-0.040	-0.048	-0.062	$+0.064$
		-0.0027		-	-0.0056	-0.0063	-0.0076

$10^{5} w_{2}$	6709	13,009	14,749	20,322	25,398	30,466
ε^{25}	$2 \cdot 2713$	13,000		$2 \cdot 2691$	$2 \cdot 2687$	$2 \cdot 2670$
d_{4}^{25}	$0 \cdot 90042$	0.92801	0.93496	0.95900	0.98631	1.01125
			$\text { nce } \sum \Delta s$	$\begin{aligned} & w_{2}=- \\ & \Delta d=0.37 \end{aligned}$	$\begin{aligned} & 7 \\ & +0 \cdot 2 \end{aligned}$	
			bon tetrach	ride in ca	n disulp	
$10^{5} w_{2}$	12,964	13,275	16,945	22,236	25,134	26,693
$10^{7} \Delta B$	-0.423	-0.429	-0.596	-0.770	-0.850	-0.889
Δn	-0.0191	-	-0.0254	-0.0334	-	-
			$\begin{aligned} & \text { ence } 10^{7} \Delta \\ & \sum \Delta n / \Sigma u \end{aligned}$	$\begin{aligned} & =-\mathbf{3 . 3 6} \\ & =-0 \cdot 14 \end{aligned}$	$2-0.076$	
$10^{5} w_{2}$	10,493	12,964	15,605	15,754	16,945	22,236
ε^{25}	2.5828	2.5761	$2 \cdot 5662$	2.5643	2.5615	$2 \cdot 5418$
d^{25}..	1-2818	1-2883	1.2950	1-2955	1-2990	$1 \cdot 3133$

whence $\Sigma \Delta \varepsilon / \sum w_{2}=-0.378$

$$
\Delta d=0.235 w_{2}+0.104 w_{2}{ }^{2}
$$

Carbon disulphide in light petroleum

$10^{5} w_{2}$	$\ldots .$.	1716	3394	6458	7783	9424	13,063	13,812
$10^{7} \Delta B$	\ldots.	0.026	0.054	0.105	0.127	$0 \cdot 170$	0.250	0.271

$10^{5} w_{2}$	$\ldots .$.	3574	6009	8606
Δn	$\cdots \cdots \cdots$	0.0045	0.0076	0.0105

$10^{5} w_{2}$	2582	4770	5696	8103	8811	9071
ε^{30}	$1 \cdot 9484$	$1 \cdot 9566$	$1 \cdot 9589$	1.9677	1.9699	1.9710
d_{4}^{30}	0.71853	0.72532	0.72786	0.73563	0.73775	0.73877
			whence $\begin{aligned} \sum \Delta \varepsilon / \sum w_{2} & =0.344 \\ \Sigma \Delta d / \sum w_{2} & =0.311\end{aligned}$			

1478 Armstrong, Aroney, Le Fèvre, Le Fèvre, and Smith:

Table 4. (Continued.)
Naphthalene in carbon disulphide

$\begin{gathered} 10^{5} v_{2} \\ 1 v_{2} \ldots . . \\ 10^{2} \Delta B \quad \ldots . . \end{gathered}$	$\begin{gathered} 5186 \\ -0.025 \end{gathered}$	$\begin{gathered} 8423 \\ -0.045 \end{gathered}$	$\begin{aligned} & 11,028 \\ & -0.077 \end{aligned}$	$\begin{aligned} & 11,686 \\ & -0.090 \end{aligned}$	$\begin{gathered} 14,111 \\ -0.161 \end{gathered}$	$\underset{-0.217}{16,856}$
		whence $10^{7} \Delta B=-0.194 w_{2}-8.84 w_{2}{ }^{2}$				
$\begin{aligned} & 10^{5} w_{2} \\ & \Delta n \end{aligned} .$	${ }_{-0.0002}^{4139}$	9401-0.0005	$\begin{gathered} 10,597 \\ -0.0006 \end{gathered}$	$\begin{gathered} 15,982 \\ -0.0008 \end{gathered}$		
			whence $\Sigma \Delta n / \Sigma w_{2}=-0.0052$			
$\begin{array}{ccc} 10^{5} 0^{5} & \ldots \ldots . . \\ \varepsilon^{25} \\ d_{4}^{25} & \cdots \cdots \cdots \cdots \end{array}$	$\begin{gathered} 4139 \\ 2.6285 \\ 1 \cdot 2441 \end{gathered}$	7150	$\begin{gathered} 9401 \\ 2 \cdot 6328 \\ 1 \cdot 2297 \end{gathered}$	10,597	12,645	15,982
				2.6345		2.6392
		1.2358		1.2262	1.2211	1.2120
			whe	$\sum_{i A d /} \Delta \varepsilon / \sum_{2}$	$=0.091$	

Table 5. Calculation of molar Kerr constants at infinite dilution.

Solute	Solvent	$\left(\alpha \varepsilon_{1}\right)_{w_{2}}=0$	$(\beta)_{w_{2}=0}$	γ	$(\delta)_{t_{2}}=0$	$\infty\left({ }_{m} K_{2}\right) \times 10^{12}$
CCl_{4}	Pet	$0 \cdot 118$	0.535	0.018	0	$1 \cdot 3$
CCl_{4}	$\mathrm{C}_{6} \mathrm{H}_{6}$	-0.017	$0 \cdot 431$	-0.015	-0.452	$1 \cdot 6$
CCl_{4}	$\mathrm{CS}_{2}{ }^{\text {a }}$	-0.378	$0 \cdot 187$	-0.092	-1.069	1.2
CS_{2}	Pet	$0 \cdot 344$	$0 \cdot 438$	0.089	$18 \cdot 11$	$30 \cdot 0$
CS_{2}	CCl_{4}	$0 \cdot 494$	$-0.302{ }_{5}$	$0 \cdot 122$	47.84	$27 \cdot 8$
CS_{2}	$\mathrm{C}_{6} \mathrm{H}_{6}$	$0 \cdot 293$	$0 \cdot 290{ }_{6}$	0.051	$4 \cdot 185$	$27 \cdot 1$
$\mathrm{C}_{6} \mathrm{H}_{6}$	Pet	$0 \cdot 245$	$0 \cdot 176$	0.055	$4 \cdot 320$	$8 \cdot 3$
$\mathrm{C}_{6} \mathrm{H}_{6}$	CCl_{4} *	$0 \cdot 227$	-0.755	0.067	$10 \cdot 5$	$7 \cdot 2$
$\mathrm{C}_{6} \mathrm{H}_{6}$	CS_{2}	-0.455	-0.467	-0.118	$-1.55{ }_{6}$	$6 \cdot 3$
$\mathrm{C}_{10} \mathrm{H}_{8}$	Pet	0.455	0.338	0.117	17.61	$49 \cdot 4$
$\mathrm{C}_{10} \mathrm{H}_{8}$	$\mathrm{CCl}_{4} \dagger$	$0 \cdot 617$	-0.515	$0 \cdot 181$	$49 \cdot 0$	$48 \cdot 1$
$\mathrm{C}_{10} \mathrm{H}_{8}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.318	$0 \cdot 160$	0.073	$4 \cdot 083$	$45 \cdot 5$
$\mathrm{C}_{10} \mathrm{H}_{8}$	CS_{2}	$0 \cdot 091$	-0.221	-0.003	-0.062	$45 \cdot 0$
	ta from	54, 1577.	\dagger Data from $J ., 1955,1641$.			

Discussion.-Because of the difficulties experienced in measuring near-zero molar Kerr constants, the results with carbon tetrachloride as solute cannot be fixed with certainty between the limits $1-2 \times 10^{-12}$; with the other solutes, however, definite solvent effects can be discerned. The data of Table 2 give fairly satisfactory plots against the volume polarisations of the solvents or such functions of n_{1} as $n_{1}{ }^{2} /\left(n_{1}{ }^{2}+2\right)$. The Figure shows ${ }_{\infty}\left(m K_{2}\right)$ versus $\left(n_{1}{ }^{2}-1\right) /\left(n_{1}{ }^{2}+2\right)$ as an example.

Various considerations, set out in the papers of Raman and Krishnan, ${ }^{18}$ and Le Fèvre and Narayana Rao, ${ }^{19}$ suggest that the above relations are not accidental, since the apparent semi-axes of polarisability of a molecule may be affected by the properties of the medium in which they are studied and by the shape of the ellipsoidal cavity the structure is assumed to occupy.

Following the work of ref. 19, equation (2) is proposed for non-polar solutes:

$$
\begin{equation*}
b_{\mathrm{i}}^{\mathrm{s}} / b_{\mathrm{i}}^{\mathrm{v}}=3 n_{1}^{2} /\left\{\left(n_{1}^{2}+2\right)\left(1-f_{\mathrm{i}} b_{\mathrm{i}}^{\mathrm{v}}\right)\left[n_{1}^{2}+\left(1-n_{1}^{2}\right) k_{\mathrm{i}}\right]\right\} . \tag{2}
\end{equation*}
$$

in which the b_{i} 's are the usual three semi-axes of a molecular polarisability ellipsoid, either as they appear in a solution $\left(b_{i}^{\mathrm{s}}\right)$ or as their " true " values in a gas $\left(b_{\mathrm{i}}^{\mathrm{V}}\right), n_{1}$ is the refractive index of the solvent, the k_{1} 's are shape factors, and the f_{i} 's are quantities given by:

$$
f_{\mathrm{i}}=3 k_{\mathrm{i}}\left(1-k_{\mathrm{i}}\right)\left(n_{1}^{2}-1\right) / a b c\left[n_{1}^{2}+\left(1-n_{1}^{2}\right) k_{\mathrm{i}}\right]
$$

where $a b c$ is the product of the radii defining the volume of the cavity. Since Le Fèvre and Narayana Rao ${ }^{19}$ obtained reasonable results in a related problem by computing abc from the minimum volume of the solute in the liquid state, i.e., $a b c=3 M_{2} / 4 \pi N d_{\mathrm{mp}}$, d_{mp} being the density at the m. p., this method has been adopted here. The k_{i} 's have been read from

[^3]curves due to Osborn, ${ }^{20}$ in conjunction with ratios B / A and C / A, in which A, B, and C are linear dimensions derived by calculation, or from scale-drawings, in the way described by Barclay and Le Fèvre, ${ }^{21}$ Buckingham and Le Fèvre, ${ }^{8}$ and Holland and Le Fèvre ${ }^{23}$ (cf. also refs. 1 and 9). For a spherical molecule, of course, $k_{1}=k_{2}=k_{3}=\frac{1}{3}$. Table 6 lists data for the solutes examined. Table 7 gives the polarisability semi-axes deduced from the

Plot of $10^{12}{ }_{m} K_{2}$ against $\left(\mathrm{n}_{1}{ }^{2}-1\right) /\left(\mathrm{n}_{2}{ }^{2}+2\right)$. The thick lines on the ordinate show the ranges of ${ }_{m} K_{\text {gas }}$ calculated by equations (2), (3a), (3b), and (3c). The values for $\mathrm{C}_{10} \mathrm{H}_{8}$ should extend up to $93 \cdot 4$.
${ }_{\infty}\left({ }_{m} K_{2}\right)$'s in carbon tetrachloride contained in Table 5; the cases of benzene and naphthalene are brought forward from previous papers, that of carbon disulphide is new (the ${ }_{\mathrm{E}} P$ required for this calculation being $20 \cdot 39$ c.c., taken from Le Fèvre and Narayana Rao's work ${ }^{23}$).

With the help of equation (2), the semi-axes of Table 7 can be transformed into others,
Table 6. Shape factors and dimensions of solutes.

Solute *	A	B	C	k_{1}	k_{2}	k_{3}
CS_{2}	$6 \cdot 18$	3.08	3.08	$0 \cdot 174$	$0 \cdot 413$	$0.41{ }_{3}$
$\mathrm{C}_{6} \mathrm{H}_{6}$	6.70	6.70	2.90	$0.21{ }^{5}$	0.215	0.57
$\mathrm{C}_{10} \mathrm{H}_{8}$	8.98	$7 \cdot 18$	$2 \cdot 90$	$0 \cdot 16$	$0 \cdot 22$	0.62

Table 7. Semi-axes of the apparent polarisability ellipsoids in carbon tetrachloride as solvent.

	Solute	$10^{23} b_{1}{ }^{5}$	$10^{23} b_{2}{ }^{\text {a }}$	$10^{23} b_{3}{ }^{\text {a }}$
CS_{2}		$1 \cdot 308$	0.558	0.558
$\mathrm{C}_{6} \mathrm{H}_{6}$ *		$1 \cdot 114$	1.114	0.733
$\mathrm{C}_{10} \mathrm{H}_{8} \dagger$		2.15	$1 \cdot 76$	1.03
	., 1954,	\dagger From J., 1955, 1641.		

Table 8. Semi-axes for molecules in gaseous state, calculated by equation (2).

	$10^{23} b_{1}{ }^{\text {v }}$	$10^{23} b_{2}{ }^{\text {v }}$	$10^{28} b_{3}{ }^{\text { }}$
CS_{2}	1.363	0.525	0.525
$\mathrm{C}_{6} \mathrm{H}_{6}$	$1 \cdot 214$	1.214	$0 \cdot 632$
$\mathrm{C}_{10} \mathrm{H}_{8}$	$2 \cdot 413$	$1 \cdot 897$	$0 \cdot 863$

$b_{i}{ }^{\text {v }}$ (see Table 8), which should be those found by direct measurement on vapours. Extant information is too sparse for a check of Table 8 from experiment. The Kerr effect of

[^4]naphthalene has not yet been studied as a gas, but Stuart and Volkmann ${ }^{24}$ report $10^{23} b_{\mathrm{i}} \mathrm{r}$'s for carbon disulphide and benzene respectively as $1.512,0.550,0.550$, and 1.231 , $\mathbf{1} \cdot \mathbf{2 3 1}, \mathbf{0 . 6 3 5}$. Since Stuart and Volkmann adopted mean polarisabilities which differ from those used here, comparisons are best made by ratios. This is done in Table 9, from which it is obvious that the calculated semi-axes of Table 8 show a near approach to the Stuart and Volkmann's " gas " values.

Table 9. Ratios of semi-axes found and calculated for gases and observed in carbon tetrachloride.

	Carbon disulphide			Benzene		
	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$	$\overbrace{10}{ }^{23} b_{1}$	$10^{28} b_{2}$	$10^{23} b_{3}$
From ref. 24	2.75	1	,	1.94	1.94	1
From Table 7	$2 \cdot 34$		1	$1 \cdot 52$	1.52	1
From Table 8	$2 \cdot 60$			1.92	1.92	1

Next, from the semi-axes of Table 8, and again by using equation (2), the " apparent " semi-axes which the solutes should exhibit in light petroleum, benzene, and carbon disulphide may be computed, and therefrom estimates made of the molar Kerr constants to be expected in these media. Table 10 shows the outcome of such calculations. Agreement between prediction and observation is good for carbon disulphide, somewhat less so for benzene, and worst for naphthalene. This is not surprising, since the assumptions which underlie equation (2)-especially those associated with linear dimensions, shape

Table 10. Calculations of apparent semi-axes and molar Kerr constants in petroleum ether, benzene, and carbon disulphide.

Solvent	$10^{23} b_{1}{ }^{\text {a }}$	$10^{23} b_{2}{ }^{\text {8 }}$	$10^{23} b_{3}{ }^{\text {a }}$	$10^{12}{ }_{m} K$ calc.	$10^{12}{ }_{m} K$ obs.
Solute: $\mathrm{CS}_{2} ; a b c=2.08 \times 10^{-23}$ c.c.					
Pet	$1 \cdot 331$	0.562	$0 \cdot 652$	$29 \cdot 6$	$30 \cdot 0$
$\mathrm{C}_{6} \mathrm{H}_{6}$	1.290	0.555	0.555	$27 \cdot 0$	$27 \cdot 1$
CS_{2}	$1 \cdot 230$	0.539	0.539	$23 \cdot 9$	$23 \cdot 8$
Solute: $\mathrm{C}_{6} \mathrm{H}_{6} ; a b c=3.47 \times 10^{-23}$ c.c.					
Pet	$1 \cdot 1395$	$1 \cdot 1395$	0.731	$8 \cdot 3$	$8 \cdot 3$
$\mathrm{C}_{6} \mathrm{H}_{6}$	1.097	1.097	0.733	$6 \cdot 6$	$5 \cdot 9$
CS_{2}	1.038	1.038	0.727	$4 \cdot 8$	$6 \cdot 3$
Solute: $\mathrm{C}_{10} \mathrm{H}_{8} ; a b c=5.194 \times 10^{-23}$ c.c.*					
Pet	$2 \cdot 20{ }_{5}$	$1.79{ }_{8}$	$1 \cdot 023$	54-1	$49 \cdot 4$
$\mathrm{C}_{6} \mathrm{H}_{6}$	$2 \cdot 113$	$1.73{ }_{3}$	$1.03{ }_{2}$	$45 \cdot 1$	$45 \cdot 5$
CS_{2}	1.990	$1 \cdot 643$	$1 \cdot 03_{0}$	$35 \cdot 4$	$45 \cdot 0$
* $d_{\mathrm{mp}}=0.978 \mathrm{~g} . / \mathrm{c} . \mathrm{c}$. from ref. 25.					

factors, and the products $a b c$-are probably least valid for naphthalene, the C for which (see Table 6) has been taken equal to that of benzene although in reality it is likely to be greater. If the ratio C / A were larger, then the differences between the ${ }_{m} K$'s forecast for naphthalene in the three solvents in Table 10 would be reduced. Similar remarks would apply also to benzene, two estimates ${ }^{26}$ of the "thickness" of which have been 3.2 and $3 \cdot 7 \AA$. These both exceed the value of $2 \cdot 90 \AA$ used here. However, since no reported " thicknesses " of naphthalene can be found in the literature, the matter will not be pursued now, as the present objective is to explore methods of calculation which utilise, for the various solutes, data which are as consistently accessible as possible.

Other equations ($3 a, 3 b$, and $3 c$) have been investigated as alternatives to (2). They

[^5]differ among themselves only in the values adopted for K : in $3 a, K=1$, in $3 b, K=n_{1}{ }^{2}$, in $3 c, K=n_{1}$:
$$
b_{\mathrm{i}}^{\mathrm{B}} / b_{\mathrm{i}}^{\mathrm{v}}=1-K\left(n_{1}{ }^{2}-1\right)\left(0.333-k_{\mathrm{i}}\right) /\left(n_{1}^{2}+2\right) . \quad . \quad(3 a),(3 b), \text { or }(3 c)
$$
otherwise symbols have the same meanings as in eqn. (2). The quantity ($0.333-k_{\mathrm{i}}$) is introduced to reflect the departure of the solute molecule from sphericality. Table 12 illustrates the degrees of success in which ${ }_{m} K_{2}$'s may be predicted by these three relations. Table 11 gives the $b_{i}{ }^{\gamma}$'s, deduced from the measurements in carbon tetrachloride (Table 7), which are necessary for the production of Table 12.

By summing the squares of the differences between ${ }_{m} K$ calc. and ${ }_{m} K$ obs. in Tables 10 and 12 it appears that the order of best fit is ($3 a$) superior in turn to ($3 c$), to (2), and to ($3 b$). In large part, however, this situation is determined by the results for naphthalene, comment

Table 11. Semi-axes for molecules in gaseous state, calculated by equations (3a), (3b), and (3c).

Table 12. Calculations of apparent semi-axes and molar Kerr constants in light petroleum, benzene, and carbon disulphide using equations (3a), (3b); and (3c).

Solvent	Equation	$10^{23} b_{1}{ }^{8}$	$10^{23} b_{2}{ }^{\text {8 }}$	$10^{23} b_{3}{ }^{\text {8 }}$	$10^{12}{ }_{m} \mathrm{~K}$ calc.	$10^{12}{ }_{m} K$ obs
Solute: CS_{2}						
Pet	$3 a$	1.315	$0 \cdot 556$	0.556	28.8	$30 \cdot 0$
...	$3 b$	1-332	$0 \cdot 553$	0.553	$29 \cdot 3$,,
"' ${ }^{\text {c...... }}$	3 c	$1 \cdot 322$	0.556	0.556	29.3	
$\mathrm{C}_{6} \mathrm{H}_{6}$	$3 \boldsymbol{a}$	$1 \cdot 303$	0.559	0.559	$27 \cdot 7$	$27 \cdot 1$
,	$3{ }^{3}$	$1 \cdot 290$	0.561	0.561	$25 \cdot 6$,,
" $\quad .$.	3 c	1.298	0.560	0.560	$27 \cdot 2$	
$\mathrm{CS}_{2} \ldots \ldots$.	$3 a$	$1 \cdot 290$	0.561	0.561	$26 \cdot 5$	$23 \cdot 8$
	$3 b$	$1 \cdot 227$	$0 \cdot 573$	0.573	$20 \cdot 6$,,
',	3 c	$1 \cdot 268$	$0 \cdot 566$	$0 \cdot 566$	$24 \cdot 6$,
Solute: $\mathrm{C}_{6} \mathrm{H}_{6}$						
Pet	$3 a$	$1 \cdot 119$	$1 \cdot 119$	0.727	$7 \cdot 7$	$8 \cdot 3$
,	$3 b$	1-129	1-129	0.697	$9 \cdot 1$,
'"	3 c	1-122	1-122	0.724	$7 \cdot 9$	
$\mathrm{C}_{6} \mathrm{H}_{6}$	$3 a$	$1 \cdot 111$	$1 \cdot 111$	0.735	$7 \cdot 1$	$\ddot{5} \cdot 9$
"	$3 b$	$1 \cdot 103$	1-102	0.746	$6 \cdot 2$,
"	3 c	$1 \cdot 108$	$1 \cdot 108$	0.740	$6 \cdot 8$	
$\mathrm{CS}_{2} \ldots \ldots \ldots$	$3 a$	1.103	$1 \cdot 103$	0.746	$6 \cdot 4$	$6 \cdot 3$
,"	$3 b$	1.064	l. 064	0.787_{5}	$3 \cdot 7$,,
" $\quad .$.	3 c	$1 \cdot 090$	1.090	$0 \cdot 761$	$5 \cdot 4$,
Solute: $\mathrm{C}_{10} \mathrm{H}_{8}$						
Pet	$3 a$	$2 \cdot 164$	$1 \cdot 769$	$1.02{ }_{2}$	$50 \cdot 4$	$49 \cdot 4$
"	$3 b$	$2 \cdot 19{ }_{2}$	$1.78{ }_{2}$	$1.00{ }_{2}$	$54 \cdot 9$,,
	3 c	$2 \cdot 17{ }_{6}$	1.773	1.015	$52 \cdot 1$	
$\mathrm{C}_{6} \mathrm{H}_{6}$	$3 \mathrm{3a}$	$2 \cdot 14{ }^{\text {a }}$	$1.75{ }_{8}$	$1.03{ }_{6}$	$47 \cdot 3$	$45 \cdot 5$
,	$3{ }^{3}$	$2 \cdot 114$	$1.74{ }_{5}$	1.050	$43 \cdot 4$,
CS	3 c	$\mathrm{V}^{2} \cdot 13_{4}$	$1.75{ }_{3}$	$1.04{ }_{1}$	$46 \cdot 2$	
CS_{2}	$3 \mathrm{3a}$	$2 \cdot 12{ }_{1}$	${ }^{1.74}{ }_{5}$	$1.05{ }_{2}$	$44 \cdot 1$	$45 \cdot 0$
",	$3 b$ 3	$2.00{ }_{4}$ 2.083	1.688 1.72	1.120 1.07 7	$29 \cdot 9$ $39 \cdot 0$	"

on which has already been made. If the case of naphthalene is omitted the order appears as (3c) better than (3a), than (2), than (3b), while for carbon disulphide alone it is (2) better than $(3 c)$, than $(3 a)$, than ($3 b$).

Three other subjects of interest arise from the semi-axes in the above Tables. From the data of Tables 8 and 11, the molar Kerr constants for carbon disulphide and benzene as gaseous dielectrics at 25° may be directly calculated. Values emerge as follows:

From Table 8, involving equation (2), ${ }_{m} K_{\text {gas }} \times 10^{12}=35$ for CS_{2} and 17 for $\mathrm{C}_{6} \mathrm{H}_{6}$;
From Table 11, involving equations (3a), (3b), and (3c), ${ }_{m} K_{\text {gas }} \times 10^{12}=34-41$ for CS_{2} and $11-15$ for benzene.
The only measurements available are those by Stuart and Volkmann ${ }^{11}$ to which reference has already been made. Transformation of their observations into ${ }_{m} K^{\prime}$ s for 25° gives ca. 48×10^{-12} and ca. 17×10^{-12} for CS_{2} and $\mathrm{C}_{6} \mathrm{H}_{6}$ respectively. Agreement thus seems good for benzene and correct in order for carbon disulphide. However, it should be remarked that the quoted experimental work is solitary and urgently requires re-examination, in view of the practical difficulties always inherent in the determination of small Kerr effects-difficulties which are greatly increased by working at elevated temperatures.

The second subject concerns the molecular anisotropies ${ }^{12,13}$ of gases, reference to which has also been made at the outset. From Tables 8 and 11 , values of δ^{2} gas can be computed:

For CS_{2}, from Table 8 (eqn. 2), $10^{3} \delta^{2}{ }_{\text {gas }}=179$
," $\mathrm{C}_{6} \mathrm{H}_{6}$ " $\quad, \quad, \quad=72$
," $\mathrm{C}_{10} \mathrm{H}_{8}$," \quad, \quad, $\quad, \quad=140$
,, CS_{2}, from Table 11 (eqns. $3 a, 3 b, 3 c$) $10^{3} \delta_{\text {gas }}^{2}=238-259$
, $\mathrm{C}_{6} \mathrm{H}_{6}, \quad, \quad, \quad, \quad=48-67$
," $\mathrm{C}_{10} \mathrm{H}_{8}$, , $, \quad, \quad=104-123$
Bhagavantam (ref. 13, pp. 54, 55) lists, as most probable, 221, 79, and 145 for $10^{3} \times \delta^{2}$ gas for $\mathrm{CS}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$, and $\mathrm{C}_{10} \mathrm{H}_{8}$ respectively. However it is clear, e.g., from data cited by Ramakrishna Rao, ${ }^{27}$ that considerable variations exist among the results of different observers; this is particularly the case for CS_{2} for which $10^{3} \delta^{2}$ gas, determined by six workers, lies between the limits 204 (Ramakrishna Rao) and 346 (Ganesan ${ }^{28}$). In such circumstances therefore the applicabilities of equations (2), (3a), (3b), and (3c) cannot be adjudged unsatisfactory.

The third subject relates to the dependence of electronic polarisations on state. From the semi-axes listed in Tables 8 and 11 " vapour values " of electronic polarisations should be calculable by the relation: ${ }_{\mathrm{E}} P_{\mathrm{gas}}=4 \pi \boldsymbol{N}\left(b_{1}{ }^{\top}+b_{2}{ }^{\boldsymbol{V}}+b_{3}{ }^{\top}\right) / 3$. Table 13 summarises the position and also makes comparison with the corresponding polarisations drawn from the " solution semi-axes" of Table 7. It is seen that in all cases, except CS_{2} by equation (2),

Table 13. Electronic polarisations of CS_{2} and $\mathrm{C}_{6} \mathrm{H}_{6}$ as vapours and as solutes in carbon tetrachloride.

T	CS_{2}	$\mathrm{C}_{6} \mathrm{H}_{6}$	CS_{2}	CS_{2}	CS_{2}	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{6}$
involved	8(2)	8(2)	11(3a)	11 (3b)	$11(3 \mathrm{c}$)	11(3a)	11 (3b)	11(3c)
${ }_{\mathrm{E}} P_{\text {gas }}$ calc.	$20 \cdot 29$	25.73	$20 \cdot 68$	21.07	$20 \cdot 84$	$25 \cdot 15$	25.52	$25 \cdot 30$
${ }_{\mathrm{E}} P_{\mathrm{gax}} / \mathrm{E} P_{\mathrm{CCl}_{4}} \ldots \ldots \ldots .$.	0.995	1.033	1.014	1.033	$1 \cdot 022$	1.010	1.025	1.016
Table and equation involved	10(2)	10(2)	12(3a)	12(3b)	12(3c)	12(3a)	12(3b)	12(3c)
${ }_{\mathrm{E}} P_{\text {liquid }}$ calc.	19.41	24-62	20.28	$19 \cdot 96$	20.18	$24 \cdot 87$	24.81	$24 \cdot 86$
${ }_{\mathbf{E}} \mathrm{P}_{\text {gas }} / \mathbf{E} P_{\text {Hiluald }} \ldots \ldots \ldots .$.	1.045	1.045	$1 \cdot 020$	$1 \cdot 056$	1.033	1.011	$1 \cdot 029$	1.018

the electronic polarisation of each species as a gas is forecast to be slightly greater than as a solute. No data exist whereby this can be checked against experiment. However it seems reasonable to assume that ${ }_{\mathrm{E}} P_{\mathrm{gas}} / \mathrm{E} P_{\text {liquid }}$ ratios will be close to the corresponding

[^6]molecular refraction ratios, which can be found accurately. At N.T.P. and for $\lambda=$ $5893 \AA,(n-1) \times 10^{6}$ is ${ }^{29}$ for $\mathrm{CS}_{2} 1478$ and for $\mathrm{C}_{6} \mathrm{H}_{6} 1823$, whence, with $V=22414.6$ c.c., $\left(R_{\mathrm{D}}\right)_{\text {gas }}$ is 22.08 and 27.23 c.c. respectively; the related $\left(R_{\mathrm{D}}\right)_{\text {liquia }}$ values ${ }^{30}$ are 21.18 and 26.18 c.c., from which $\left(R_{\mathrm{D}}\right)_{\text {gas }} /\left(R_{\mathrm{D}}\right)_{\text {liquid }}$ ratios follow as 1.042 and 1.041 . The last three lines of Table 13 deal with the ${ }_{E} P_{\mathrm{gas}} / \mathrm{E} P_{\text {liquid }}$ ratios predicted by the four equations under consideration, all of which appear qualitatively correct, while eqn. (2) is nearly quantitatively so.

Finally, the quasi-spherical solute, carbon tetrachloride may be mentioned. For such a structure the k_{i} 's are each $1 / 3$, and it is immediately obvious by equations (3a), (3b), and (3c) that $b_{\mathrm{i}}^{\mathrm{s}} / b_{\mathrm{i}}{ }^{\mathrm{r}}=1$. By eqn. (2), using $a b c=3.64 \times 10^{-23}$ from $d_{\mathrm{mp}}=1.67_{5}$ g./c.c.), $n^{2} \mathrm{COl}_{4}=2.1243$, and $b_{1}{ }^{\mathrm{s}}=b_{2}{ }^{\mathrm{s}}=b_{3}{ }^{\mathrm{s}}=1.026 \times 10^{-23} \quad$ (from ${ }_{\mathrm{E}} P_{\text {liquid }}=25.89$ c.c.), the $b_{i}{ }^{\mathrm{V}}$'s appear as 1.022×10^{-23}-the ratio $b_{\mathrm{i}}{ }^{\mathrm{B}} / b_{\mathrm{i}}{ }^{\mathrm{V}}$ being thus $1 \cdot 00_{4}$. Actually, to judge from $\left(R_{\mathrm{D}}\right)_{\text {liquia }} /\left(R_{\mathrm{D}}\right)_{\text {gas }}$ values ${ }^{29,30}$ the ratio should be $26.51 / 26 \cdot 58=0.997_{4}$. To produce such a result $a b c$ needs to be $3 \cdot 86_{3} \times 10^{-23}$ c.c. which corresponds to $d_{\mathrm{mp}}=1.578$; this is far lower than that ($1.675 \mathrm{~g} . / \mathrm{c} . \mathrm{c}$.) obtained by extrapolating to -22.9° the densities listed by Timmermans. ${ }^{31}$ It is perhaps a coincidence that by using a $\mathrm{C}-\mathrm{Cl}$ inter-centre distance of $1.76 \AA$ and a " Wirkungs-radius" of $1.6 \AA$ for chlorine, ${ }^{32} a b c$ becomes 3.79×10^{-23} c.c., a value which makes $b_{i} / / b_{i}{ }^{\mathbf{r}}$ unity. Of course, if ${ }_{m} K_{\text {COI }}$ is in fact due to distortion, ${ }^{3}$ the assumption that $k_{\mathrm{i}}=1 / 3$ is slightly incorrect, and small solvent effects should be expected (see, however, conclusion 7 below).

Conclusions.-(1) The molar Kerr constants of non-polar solutes show a small dependence on the solvent, being larger in media with lower refractive indexes, and vice versa.
(2) Such solvent effects can be attributed to apparent variations in the polarisability semi-axes of a molecule caused by its environment.
(3) Equations may be developed whereby the " true " semi-axes can be calculated from corresponding " apparent " values, determined from work on solutions.
(4). In the two cases for which measurements as gases have been made (CS_{2} and $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)$, the calculated (${ }_{m} K_{\mathrm{gas}}$)'s are of the order of magnitude found by experiment.
(5) A similar claim may be made regarding the molecular anisotropies as gases of $\mathrm{CS}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$, and $\mathrm{C}_{10} \mathrm{H}_{8}$.
(6) The equations predict that the electronic polarisations of substances should be slightly greater as vapours than as liquids or solutes; this also is in conformity with known facts regarding molecular refractions.
(7) In the one instance $\left(\mathrm{CCl}_{4}\right)$ where the molar Kerr constant is believed to be wholly due to a " θ_{3} term," alterations of ${ }_{m} K_{2}$ by the medium, if they occur at all, are undetectable at the level of experimental accuracy at present available.

The authors acknowledge with gratitude the award of a Research Scholarship to M. R. Smith by the Australian Atomic Energy Commission.

School of Chemistry, University of Sydney, N.S.W., Australia.
[Received, October 28th, 1957.]

[^7]
[^0]: ${ }^{1}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
 ${ }^{2}$ Le Fèvre, Le Fèvre, and Narayana Rao, J., 1956, 708.

[^1]: * On p. 309 of ref. l, equation (l) is incorrectly shown without 9 as a denominator and without (26) as its serial number. Other errors which may mislead occur on p. 290 , Table 9 , where the data for CHCl_{3} should read $0.673,9.901$, and 0.901 ; on p. 303, where the angle A should be 111° with those at C and D being 108°; and on p. 305, where the structures shown should be labelled A, B, and C respectively from the top of the page downwards.
 ${ }^{3}$ Le Fèvre and Le Fèvre, $J ., 1953,4041$; 1954, 1577.
 4 Born and Jordan, " Elementare Quantenmechanik," Springer Verlag, Berlin, 1930, p. 259.
 ${ }^{5}$ Buckingham and Pople, Proc. Phys. Soc., 1955, 68, A, 905.
 ${ }^{6}$ Le Fèvre and Le Fèvre, J., 1955, 2750.
 7 Buckingham, Trans. Faraday Soc., 1956, 52, 611.
 ${ }^{8}$ Buckingham and Le Fèvre, J., 1952, 1932.
 ${ }^{9}$ Le Fèvre, " Dipole Moments," Methuen, London, 1953, 3rd edn., p. 40.
 ${ }^{10}$ Le Fèvre and Le Fèvre, Austral. J. Chem., 1954, 7, 33.
 ${ }_{11}$ Stuart and Volkmann, Ann. Phys., 1933, 18, 121.
 ${ }^{12}$ Le Fèvre and Purnachandra Rao, J., 1957, 3644.
 13 Bhagavantam, "Scattering of Light and the Raman Effect," Andhra Univ., Waltair, 1940.
 14 Briegleb, Z. phys. Chem., 1932, 16, B, 249.

[^2]: 15 Le Fèvre and Le Fèvre, unpublished observations.
 ${ }^{16}$ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, $J ., 1956,1405$.
 17 Le Fèvre, Le Fèvre, and Oh, Austral. J. Chem., 1957, 10, 218.

[^3]: ${ }^{18}$ Raman and Krishnan, Proc. Roy. Soc., 1928, A, 117, 589.
 ${ }^{19}$ Le Fèvre and Narayana Rao, Austral. J. Chem., 1955, 8, 329.

[^4]: ${ }^{20}$ Osborn, Phys. Rev., 1945, 67, 351.
 ${ }^{21}$ Barclay and Le Fèvre, J., 1950, 556.
 ${ }_{22}$ Holland and Le Fèvre, $J ., 1950,2166$.
 ${ }^{23}$ Le Fèvre and Narayana Rao, Austral. J. Chem., 1954, 7, 135.

[^5]: 24 Stuart and Volkmann, Ann. Phys., 1933, 18, 121.
 ${ }^{25}$ Egloff, " Physical Constants of Hydrocarbons," Reinhold, New York, 1947, Vol. IV, p. 81.
 ${ }^{26}$ Listed by Stuart, "Die Struktur des Freien Molekuls," Springer Verlag, Berlin-GöttingenHeidelberg, 1952, p. 99.

[^6]: ${ }^{27}$ Ramakrishna Rao, Ind. J. Phys., 1927, 2, 61.
 ${ }^{28}$ Ganesan, Phil. Mag., 1925, 49, 1221.

[^7]: 29 International Critical Tables, 1930, Vol. VII, lst edn., p. 10.
 30 Landolt-Börnstein, "Tabellen," 1912 edn.
 ${ }^{31}$ Timmermans, " Physico-Chemical Constants of Pure Organic Compounds," Elsevier, Amsterdam, 1950.
 ${ }^{32}$ Stuart, Z. phys. Chem., 1935, B, 27, 350.

